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Localized Bifurcations and Defect Instabilities 
in the Convection of a Nematic Liquid Crystal 

A. J o e t s  1 and R. R i b o t t a  I 

The stationary and the time-dependent homogeneous ordered states in convec- 
tion may both become unstable against localized perturbations. Defects are then 
created and they may contribute to the disorganization of the homogeneous 
state. We present an experimental study of defects in some homogeneous 
stationary structures as well as in the traveling-wave states of convection of a 
nematic liquid crystal. We show that the core of the defects is a germ of the 
unstable state and it can become unstable under the external stress. Then, either 
fully homogeneous states with the symmetry of the core, or complex disordered 
states can develop from the local instability of defects in processes quite similar 
to displacive transitions in solids. Some of the main features are qualitatively 
similar to numerical simulations of an appropriate Landau-Ginzburg equation. 

KEY WORDS:  Convection; nematic liquid crystal; localized bifurcations; 
defects. 

1. I N T R O D U C T I O N  

Nonlinear systems subjected to an increasing external stress may undergo 
a series of bifurcations to ordered stable states before reaching a full 
disordered state (space-time chaos). These ordered states may be stationary 
or time-dependent or both. Usually, one would consider only the 
homogeneous states, i.e., those which are characterized by an amplitude 
independent of space. However, it is very often found experimentally that 
under some circumstances, these states may become unstable under 
localized perturbations. ~1'2) One of the consequences, as will be shown 
hereafter, is the nucleation of defects in the ordered state. The defects may 

Laboratoire de Physique des Solides, Universit6 de Paris-Sud, 91405 Orsay Cedex, France, 

981 

0022-4715/91/0900-0981506.50/0 �9 1991 Plenum Publishing Corporation 



982 Joets and Ribotta 

in turn become unstableunder  the applied stress and develop in space a 
localized state with a lower symmetry. As the stress is kept increasing, a 
new homogeneous stable state can then be germinated and invade the 
whole space. 

We shall here study experimentally the quasistationary states as well 
as the ordered structures represented by 1D traveling waves. (3~ The 
similarity between those two cases that are commonly found in the convec- 
tion of a nematic liquid crystal is shown to arise from the symmetry of the 
considered states. The dynamics of the evolution of the defects under 
applied stresses has also a striking counterpart in the thermodynamic phase 
transitions of solids. Novel numerical simulations of a Landau-Ginzburg 
model shall be used for showing that defects are solutions and for 
qualitative comparison. 

2. H O M O G E N E O U S  S T R U C T U R E S  A N D  DEFECTS 

2.1. The  Exper iment  

The physical model is given by the convective instabilities developed in 
a nematic liquid crystal subjected to an AC electric field in the so-called 
"conduction regime. ''(4~ The geometry is the usual one for nematics with 
negative dielectric anisotropy: the molecules are in the planar 
(homogeneous) alignment, i.e., parallel to the glass plates between which 
the fluid is sandwiched. The electric field is applied across the layer of 
typical thickness ranging from 10 to 50 #m. We use either MBBA or Merck 
Phase IV. 

Above a well-defined voltage threshold Vth the layer becomes unstable 
against a convective state characterized by a spatial periodicity along 
the molecular direction (say x). The structures are recorded through a 
polarizing microscope and analyzed using computer-controlled digital 
processing. For  the one-dimensional traveling rolls we proceed as follows: 
in each picture we record the intensity of the transmitted light along one 
line parallel to x, So, at a given time, a wave is recorded as a periodic array 
of white dots (the crests of maximum intensity) separated by black spaces 
(the wave wells). The operation is repeated at equal time intervals and the 
successive recordings are plotted on top of each other in order to compose 
a 2D image which is the space-time {x, t} representation of the wave. A 
progressive wave will then appear as a set of parallel oblique lines tilted by 
an angle 0 onto the vertical axis t, which gives a direct measurement of the 
phase velocity v = tan 0. It is found that the structure propagates along x 
with a uniform velocity increasing with the inverse of the sample thickness 
and more sharply in the higher-frequency range. (3~ Typically, velocities v up 
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to some fraction of a wavelength 2 = 2n/q per second can be recorded. The 
smallest values are close to 10 4 2/sec in the middle of the frequency range 
and for thickness of about 50/~m. There the structures can be considered 
as stationary. 

In order to study 1D waves, we operate at high frequencies or with 
small-thickness samples. Then, we prepare the experiment so that the 
extension of the rolls along their axis y is of the order of their diameter. 
This is done using narrow electrodes 50/~m wide along y and 2 cm along 
x. Very close to threshold the traveling wave keeps stable and uniform, but 
as the control parameter, here the voltage V, is increased to reach values 
such that e =  (V 2 -  vZh)/V2h~--10 - 2  to 10 1 it becomes unstable against 
localized instabilities from which defects usually arise. 

2.2. The Stability Diagram 

The frequency of the applied AC voltage being a secondary control 
parameter, a stability diagram can be obtained by measuring the voltage 
threshold for a bifurcation, at any frequency. Two typical routes to the 
chaotic (the lowest symmetry) state are found, depending on the rate of 
application of the voltage. (~'6) 

(a) If, typically, zl V/At < 20 mV/min, a series of well-defined bifurca- 
tions occurs as V increases until the full chaotic state (Dynamic Scattering 
Mode(4l). As V increases, the stable states are, in order: the Normal Rolls, 
the Oblique Rolls (or zigzag), the Skew Varicose, and the Bimodal (Fig. 1). 
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F i g  1 Bifurcation lines in the voltage-frequency space  As Vincreases slowly, the space-time 
chaos is reached through a series of bifurcations ( d =  50 # m )  
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The flows associated with each state are studied by tracing small glass 
spheres, 3-5/~m in diameter, immersed in the fluid. (~ ~) 

The sequence of stable bifurcations then corresponds to the evolution 
from a pure "monomode" of rotation around the roll axis in the Normal 
Rolls, to a double mode of two orthogonal rotations around the • and y 
axes in the Bimodal. The Bimodal is the last ordered state before the chaos 
starts developing. The key mechanism in the flow evolution is the pinching 
of the Varicose, which produces locally a rotation of the vorticity by 
almost re/2, and induces stagnation points in the flow. ~ 

It is worth noting that here in this anisotropic fluid, the Oblique Rolls 
and the Varicose are stable stationary states, as opposed to the case of 
isotropic experiments (Rayleigh-B6nard), where they are transient 
states.(~~ 

(b) If, at the same frequency, the voltage is rather increased at a 
higher rate, then very soon beyond the first bifurcation to the Normal 
Rol~s a complex state is developed (Fig. 2). For instance, if AV/At~- 
100 mV/sec right above the first threshold, defects are spontaneously 
created in the whole sample with a low density at start. The mean separa- 
tion length between defects is of order 10L Simultaneously, time 
dependence occurs as a slow lateral motion of rolls inside domains that are 
decorrelated in time. The domains are separated by defects. The defects as 
well as the structure move in an apparent random mode of motion. 
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F ig .  2. T h e  t r a n s i t i o n  f r o m  the  N o r m a l  R o l l s  t o  t h e  c h a o t i c  s t a t e  is m e d i a t e d  b y  a c o m p l e x  

s t a t e  i n v o l v i n g  de fec t s  a n d  a t i m e - d e p e n d e n t  s t a t e ,  a s  t he  v o l t a g e  is r a p i d l y  i n c r e a s e d  

( d =  50 # m ) .  
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Increasing further the voltage increases the defect density as well as 
their average velocity. There, the motion appears as due to an oscillation 
of the amplitude that develops inside the domains (5) as an exchange 
between the two symmetrical states of Oblique Rolls. (11) The OR states are 
then coupled by a Hopf-like bifurcation. Simultaneously, the defects extend 
their core normally to the roll axis on lines which we shall name "dissocia- 
tion lines" (see Section 2.3), and which appear as bright streaks on a dark 
background (Figs. 3 and 12). This second route to the Bimodal and the 
chaotic states indicates that the defects are involved in a transient process, 
implying localized deformations of the structure. This is the fastest way by 
which the homogeneous Bimodal state can be obtained directly (5~ from the 
Normal Rolls (Fig. 2) and in fact, this complex state was quite commonly 
observed (12) right above the threshold of the so-called "Williams Domains" 
instead of the Oblique Rolls and the Varicose. 

We shall show later that such a process can be in a large part under- 
stood after the study of the stability of a defect under applied stress. In 
addition, numerical simulations are made to show that defects may arise as 
natural solutions of the problem. 

2.3. The  M o d e l  for  S t a t i o n a r y  States  of  Convect ive  Rolls 

A 2D homogeneous structure of rolls (here the Normal Rolls) is 
described by a local quantity, for instance, the vertical velocity component: 

Fig. 3. The complex state developed under rapid increase of the voltage (f= 50 Hz, 
V= 12.6 V, d= 50 #m). 
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Uz(X, y, t ) ~ A ( X ,  K T)expi(kox)+c.c ,  where, to account for the slow 
variations of the amplitude, the variables x, y, and t have been rescaled so 
that X =  ~ x, Y=  ~ y, T= et, where e is the relative increase of the 
stress, and A = A o e x p  icp. The structure is homogeneous and stable if 
A 0 = const. The amplitude A is the envelope of u(x, t) and is a solution to 
a time-dependent nonlinear equation of the Landau-Ginzburg type (~3) 
which can in principle be derived (~4) from the basic microscopic equations 
for the D G P  model(4): 

OA/Ot=I~A + A A - ~  LAI 2 A 

where t has again be rescaled. 
A uniform periodic structure of rolls is characterized by q~ = const and 

by a wavevector k o along x such that k o = grad 45, where ~ = kox + ~o. If 
the order parameter is now allowed to vary slowly in space, then q~= 
q~(x, y, t). Inside an almost homogeneous structure, where small distortions 
in the ordering appear, the perfect ordering can in principle be recovered 
by any small deformation, and the total phase variation along any oriented 
closed contour C in the plane is zero, ~c (grad ~b).ds =0.  The variable 
A(x, y, t ) can  be considered as an order parameter which characterizes the 
state, as in phase transitions. Its value is zero in the basic unstable state, 
and finite in the bifurcated state. The Normal Rolls are described by UNR 
Re{Ao exp i(kxx)}, the Oblique Rolls by UOR ~ Re{A~ exp i(kxx +kyy ) } ,  
and the homogeneous structures of lower symmetry can be considered as 
a superposition of the higher symmetry states that break the translational 
invariance along y, i.e., the Oblique Rolls. So, the Skew Varicose is the  
superposition of two symmetrical Oblique Rolls with different amplitudes: 

Usv ~ Re {A 1 exp i(kxx + ky y) + t/A 1 exp i(kxx - ky y) } 

where r/< 1, and the Bimodal is obtained in the same way, but with r/= 1. 

2.4. The  M o d e l  for  the One -D imens iona l  Travel ing Rolls 

The traveling-wave convective state found ~3'5~ mainly at high frequen- 
cies for thick samples d >  30/~m (see Fig. 1) or at any frequency for thin 
(<20/zm)  samples is a simple example of a nonlinear wave. (~) Waves are 
ordered structures of space-time and they propagate in either the - x  or x 
direction. A local quantity is expressed as 

u( x, t) = Re{A(X, T) exp i( kx - cot) + B( X, T) exp i( kx + cot)} . f ( z ) 

The system is then described by two coupled complex Landau-Ginzburg 
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(CLG) amplitude equations (17) which, after appropriate rescaling and 
keeping the same notations for the variables, read 

~A ~?A 02A 
6---[ + cg ~--~ = I~A + (1 + i~) ~ -- (1 + ifl) ]AI 2 A - (7 + i6) [B] 2 A 

c~B 0B 02B 
~t cg ~-~=#A + (1 + ic~)~x2- (1 +i f l ) [BI2B-(7+ic~) IAI2B 

The most unstable mode grows with a rate determined by (#A) and its 
amplitude is limited by the saturation (]A] 2 A). The second term is for the 
diffusion by (~2A/Ox2) and for the dispersion of the wave by (ic~ O2A/c~x2). 
The complex term, ifl ]A[ 2 A, expresses the coupling between the frequency 
and the amplitude, and the last term is for the coupling between the left 
and right waves. The coefficient Cg is the group velocity. 

The solutions are: 

(i) A uniform right-going wave, ]A] # 0  with [B] =0;  or left-going: 
IBI s0, IAI = 0 ,  

(ii) A standing wave (SW), where A and B are coupled, ]A] = ]B]. 

The progressive waves are unstable against standing waves when 
171 < 1. They also may undergo phase instabilities (of the Benjamin-Feir 
type) when y > 1, if the condition (1 + aft) < 0 is fulfilled. (lz~8~ 

However, we shall be concerned in the following with the more com- 
plex case of nonhomogeneous perturbations (i.e., localized ones), which 
usually trigger instabilities involving both the phase and the amplitude. It 
is known that nonlinear waves may develop ,localized states such as 
solitons, (~8) or more complex states responsible for the wave breaking, such 
as shocks. (16) As we shall see, defects are created after shocks are produced 
by localized modulational instabilities. 

2.5. Symmetr ies  in the 2D Homogeneous Sta t ionary  and 
T i m e - D e p e n d e n t  States 

The nature of the possible defects is determined by the symmetries that 
are broken by the bifurcated state/19) and there exists a similarity either 
between the structures or between their defects in the stationary and in the 
time-dependent states. The phase of the Oblique Rolls is (kxx + ky y), and 
it is (kxx+~ot) in a progressive wave. Then, cot and kyy  play t h e sam e  
role, reflecting the symmetries 0~,~--0, where O=arctan(kJkx), and 
v ~ - - v ,  where v is the phase velocity v = co/kx. In addition, from these 
basic states, one can construct by superposition the lower symmetry ones, 
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Fig. 4. Structures of the 1D nonlinear wave represented in the x, t space (f=95Hz, 
V= 23.7 V, d= 15 #m), and of the stationary states in the x, y space E f =  45 Hz, d= 50 #m, 
V= t0.3 V (zigzag), 11.2 V (varicose) 16.1 V (bimodal)]. 

e.g., the Varicose and Bimodal  on one hand and the Modula ted  and the 
Standing Wave (SW) on the other hand  (cf. Section 1.3). For  instance, the 
SW is the superposit ion of two opposite progressive waves of equal 
amplitude. The experimental structures shown Fig. 4 reflect those 
symmetries. One expects then that the defects will have similar features in 
both states. 

2.6. De fec ts  in a 2D Space  

A defect is a singularity of the order parameter  which corresponds to 
a nonzero  value of the total phase variation measured along any closed 
oriented contour  encircling it: ~c k ds = m.  2r~. The condit ion for such a 
singularity to persist under any small per turbat ion is that  the value of the 
integral is rn. 2~ (at least 2~z). Then the defect is topologically stable. If  the 
total phase variation over the port ion of space where the structure is dis- 
torted is less than 2re, then the integral is zero, and the distort ion does not  
correspond to a defect. Such a defect would be "unstable," i.e., cannot  exist. 
Another  case is when there is a phase jump  of 2~, but transient. This case 
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is met,  for instance,  in a 1D space when the order  pa r ame te r  is a scalar. 
The  topo log ica l  s tabi l i ty  is s tudied by represent ing each bi furcated state in 
the order-parameter (OP) space, (19) 

There,  the roll  s t ructure  is represented  by a circle S of radius  Ao, 
pa rame t r i zed  by the phase  (p(x). Any closed con tou r  C in the real space is 
m a p p e d  as a closed con tour  (a loop) ,  its image  C1 in the O P  space (Fig. 5). 
The topo log ica l  s tabi l i ty  of the defects is direct ly deduced from the p roper -  
ties of the re levant  h o m o t o p y  g roup  of  C1 in the order-parameter (OP) 
space. (~9) The defect is topologica l ly  uns table  if the closed pa th  on the con- 
tour  C1 in the O P  space can be con t inuous ly  deformed onto ,  i.e., can be 
h o m o t o p i c  to, a point .  M a n y  consequences  result  f rom these simple 
elements  concerning  the topolog ica l  s tabi l i ty  of defects, and  hence their  
poss ible  existence in the physical  space. 

a) b) 

0 

c)  

/ ] B = O  Z+ Z A=O 

\ "C A ~0 B ~0 
L / B=O A=O 

d) 

Fig. 5. (a) A closed contour C around a point defect and its image C 1 in the order- 
parameter space Z. C1 is not homotopic to a point and the defect is topologically stable. 
(b) The image of a contour C around a phase modulation where the phase variation is less 
than 2re is homotopic to a point. (c) The contour around a line defect in rolls with a 2~ phase 
jump consists of two points on the circle Z. This defect is unstable because the two points 
collapse. (d) The line defect is stable if there is a symmetry-parity breaking that leads to a set 
of disconnected circles in the OP space ("double state"). 



990 Joets and Ribotta 

2.6.1. Point  Defec ts  in a 2D Space of S t a t i o n a r y  Normal  
Rolls. They are codimension-2 defects. The codimension c is defined as 
c = d e -  dd, where de is the dimension of the physical space and da the 
dimension of the defect. 

The variation of order parameter is measured along a circle C (a 
sphere of dimension r = c - 1) around the defect P. If the total variation is 
2g, the image of the contour in the OP space is also a closed loop C, 
around the OP circle Z'. Thus, it is not homotopic to a point. If the total 
phase variation is less than 2~, then the image of the closed contour cannot 
encircle Z'. The defect is not stable, but it can be observed as a transient 
state, as we shall see later. A defect corresponds to a singularity where the 
phase is undefined and it follows that a point defect is characterized by an 
amplitude Ao = 0 at its core. 

2.6.2.  Line D e f e c t s  in N o r m a l  Rolls .  These defects of codimen- 
sion c = 1 are defined by a contour of dimension r = c - 1  = 0, i.e., two 
points on both sides of the line. On the circle _r the two points are also 
imaged by two points which can continuously get close together and 
collapse (Fig. 5). Thus, a line defect is not stable, and can be observed only 
as a transient. 

2.6.3. Line Defects  in a " D o u b l e  S t a t e . "  In the stationary 
rolls the system is characterized by an invariance under any continuous 
translation along y or - y .  If this symmetry is broken, i.e., if, in real space, 
there can be two domains of states symmetrical with respect to some line 
along y, then the line can be a stable defect. For instance, the Oblique 
Rolls structure is defined by a tilt +_0 over y. Thus, domains at 0 are 
separated from domains at - 0  by a defect which is named a domain-wall 
or a grain boundary, in analogy with defects in solids. (2~ 

The order parameter can be represented in each domain by 

A +_ ~ Ao(x) exp i (kxx 4- ky y) ~ Ao(x) exp iq~ + 

The OP space is now composed of two disconnected circles Z'+ each one 
parametrized by its own phase q)+ or q~ (Fig. 5). A contour enclosing 
a line defect will be represented by a set of two points each one on its 
respective circle. In this special situation the relevant homotopy group is 
the zeroth group, which indicates that, due to the nonconnectedness of the 
two circles, the defect is topologically stable/m) 

2.7.  D e f e c t s  in a 1D S p a c e  

There, the dimension of any defect reduces to zero, i.e., one has only 
point defects. The OP space for a periodic structure (a unique progressive 



Convection of a Nematic Liquid Crystal 991 

wave) is a circle f .  The sphere enclosing the defect in the real space is 
composed of two points on both sides and its image is a set of two points 
on Z" that can always be reduced to one point. Then, any defect inside 
a progressive wave is unstable. But in fact, the solution consists of two 
counterpropagative waves and now the parity symmetry cot.--~--~-cot is 
broken. The solution is 

A ++ ~ Ao(x)  exp i ( k x x  ~ cot) ~ Ao(x)  exp i~o+ 

The OP space is composed of two disconnected circles parametrized by the 
phases q~ + and ~ o .  In the real space a defect would consist of a point on 
x separating two opposite waves, and it will be stable because of the non- 
connectedness of the two circles. 

If now one represents the waves in the 2D {x, t} space, the point 
defect can be represented, although it is unstable (transient) in real space. 
It will appear as a dislocation. The second type of defect, which anyway 
persist stably, ~7'24~ will be represented as a domain wall separating domains 
of symmetrically tilted lines in a way quite similar to the domain wall in the 
stationary Oblique Rolls (Fig. 6). 

In conclusion, it is the symmetry of the bifurcated state that defines 
the nature (the topography) of the defect and it is the class of homotopy 
groups in the order-parameter space that indicates its possible existence. 
However, the topological stability obviously cannot give any indication on 

Fig. 6. Domain walls are line defects separating double states, (a) in the Oblique Rolls struc- 
ture (f=45 Hz, V= 10.3 V, d=50pm), (b)in progressive waves (here a source represented 
in the x, t space; f =  95 Hz, V= 23.5 V, d= i5 pro). 
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the creation process of defects, although it helps in understanding the 
dynamics of creation and annihilation of defects. 

This geometrical analysis can be extended to other states, for instance, 
to the Bimodal state, which is here, too, equivalent to the standing-wave 
state of 1D nonlinear waves. In the following we shall describe the creation, 
the topology, and the instability of the defects first inside the stationary 
structures, and next inside the 1D nonlinear waves. 

3, LOCALIZED INSTABILIT IES A N D  DEFECTS IN THE 
S T A T I O N A R Y  ROLLS 

3.1. Creat ion of Dislocations in the Normal  Rolls 

It was experimentally found that in the quasistationary Normal Rolls, 
one of the mechanisms of creation of dislocations consists of a localized 
instability of Varicose structure which occurs after a modulational 
instability takes place, triggered by a sudden and small increase of the 
voltage. 2 Once the voltage step zlV/V~-O.02 is applied, a modulation of 
both the amplitude and the phase of some rolls occurs within some tenths 
of a second, in the x direction. Two rolls distant by about t -4  wavelengths 
have a larger amplitude and a smaller diameter. This profile is constant 
along y and we name walls the larger amplitude rolls. Next, during a longer 
time, up to 100 sec, the local amplitude vanishes around one point centered 
inside the two walls. Simultaneously a localized modulation of the phase 
centered on this point pinches the few rolls between the walls. When the 
pinching reaches its maximum the rolls are cut along x into two parts 
which separate, forming then a pair of opposite dislocations. Therefore, the 
modulational instability focuses the amplitude around some point so that 
locally the pinching (Varicose) instability can be triggered with a value of 
the voltage that would be otherwise too low, by almost two orders of 
magnitude, to destabilize homogeneously the rolls. 

3.2. Topology of Point Defects in Normal  Rolls 

A defect in the Normal Rolls structure corresponds to a phase jump 
of +2~ on an oriented closed contour around its location. (6~ In other 
words an extra period is added (or subtracted, depending on the sign + 
or - ) in one of the two half-spaces defined by a line parallel to x passing 
through the defect center (Fig. 7). 

A first indication of the velocity field inside the defect (the central part 
is named the core) is obtained by using interferometry in monochromatic 
parallel lightJ 5'9~ In a homogeneous structure the molecular axis is tilted 
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Fig. 7. An edge dislocation in Normal  Rolls. In the upper half-plane an extra period is 
added. The core corresponds roughly to the undercontrasted central zone ( f = 6 0  Hz, 
V = 10.9 V, d =  50 #m). 

over x in the vertical plane with the periodicity of the convection, by an 
angle ~ which is a function of the velocity gradients. Then the index of 
refraction is modulated and birefringence measurements can give a direct 
access to the velocity gradients. Figure 8 shows the distribution of the 
isoclines (lines of equal tilt, i.e., of equal velocity gradient) in the rolls. The 
density of lines is higher close to the up and down flow lines and it vanishes 
to produce a singularity in the core of the defect. There, the tilt angle ff = 0 
and equal to that on the up and down lines. 

By tracing glass spheres immersed in the fluid, one can represent the 
streamlines inside the core. (5'7'9) Inside a convective roll their motion is 
circular (i.e., contained in a vertical plane xz) when far from the defect. But 
when they are at a distance less than 2 from the core there is an axial com- 
ponent which makes the trajectory helical. Close to the core, at a distance 
of order 2/2, the motion suddenly changes plane, and occurs for a short 
time in a plane almost normal to the previous one (Fig. 9). These motions 
clearly indicate the presence of stagnation points S which separate 
orthogonal streams taking place over a small volume of order a space 
period 2. Indeed, the same flow structure is found in the pinching of the 
varicose instability and also localized orthogonal rotations are the charac- 
teristics of the bimodal state. (6'8'9) 

822/64/5-6-7 
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Fig. 8. Interference fringes showing the isoclines of constant velocity in ( a ) a  dislocation, 
(b) a varicose, and (c) a bimodal structure. The higher the density of lines, the larger are the 
velocity gradients. In the pinched parts the velocity is lower. 
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Fig. 9. Streamlines inside the dislocation, the varicose and the bimodal, as obtained from 
particle tracing. They show that a pinching produces stagnation points S and nodal points N 
and induces a rotation by n/2 of a flow element. 

In conclusion, the core of the dislocation contains the symmetry 
elements of the state, which is stable only for higher values of the external 
stress. It is the topological constraint that forces the localized unstable state 
to appears as metastable. For instance, here, the core of the dislocation 
represents a Bimodal state, and in its vicinity the continuity with the 
Normal  Rolls is made by a pinching of decreasing amplitude, i.e., by a 
damped Varicose structure. 

Now if the core of a defect represents locally the unstable state inside 
a stable one, its stability under stress comes naturally as the problem of a 
local bifurcation to this yet unstable state. It will be shown hereafter that 
defects can mediate a transition to a homogeneous state whose symmetry 
is present in their core. 

3.3. Instabi l i ty  of  Point  Defec ts  in the  Normal  Rolls 

Since the defect core is equivalent to a local unstable state, it can be 
made unstable by increasing the external stress. Experimentally, the voltage 
is smoothly applied and one observes a dissociation, i.e., an extension of 
the core width Lx. The core width is the length between points where the 
amplitude A takes an arbitrary value close to zero (e.g., 10% of the maxi- 
mum of A). The initial value in the absence of extra stress is of order one 
roll diameter. The result shown in Fig. 10 indicates a threshold in the con- 
straint beyond which the length Lx increases sharply. Also, the width Ly of 
the deformation field measured along y decreases to zero. The width Ly 
would be the analog of the width of a Bloch wall that connects two 
domains of opposite vorticity (at least around the core). This extension of 
Lx is analogous to the core dissociation in solids, where the dislocation 
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Fig. 10. Core stretching (dissociation) L x under an increasing voltage measured by 
= (v 2 -  V~h)/V~h. 

splits into two halves (the "partials") which move apart along x. (2~ In the 
part of the structure between the two partials the rolls are completely 
pinched, and on both sides of the dissociation line they are of opposite vor- 
ticity. The dissociation line is now a real singular line similar to an Ising 
wall. At this point the voltage is close to the threshold for the bimodal, and 
the topology of the dissociation line is precisely that of the singular lines 
parallel to x in the Bimodal. Increasing further the voltage, increases the 
density of such lines until they stack together at equal distances along y, 
thus forming domains of Bimodal structure, after a typical transient time. 
Figure 11 shows the rate of area transformed into a Bimodal after a 
sufficiently high step of voltage has been applied to reach the Bimodal 
threshold. 

This rapid process involving the defects and geometrical transforma- 
tions (shear, translations, and rotations) over distances larger than 2 is 
quite similar to the so-called displacive transitions or Martensitic transfor- 
mation in solids (21) subject to a fast temperature gradient, although, 
generally, displacive transitions imply first-order transitions (subcritical 
bifurcations). 

3.4. Instabil i ty of Linear Defects in Normal  Rolls 

Line defects are topologically unstable. Linear dejects are those which 
have the topology of point defects, but which are extended in one direction. 
So they are also codimension-2 defects. This is the case for the dissociation 
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Fig. 11. Rate of area S of domain of Normal  Rolls transformed into Bimodal as the time 
increases following the sudden application of a large voltage (S o is the total area of the 
sample). 

lines, which, as we have just seen, are dislocations in which the core 
develops a bifurcation to a lower symmetry state, but where the phase 
jump is nevertheless 2n, as in a point defect. 

Another case is when a localized modulation of the amplitude and of 
the phase in the form of a pinching extends on a line over a large distance 
without any apparent dislocation (Fig. 12). The geometry is close to that of 
a dissociated dislocation, but there is no defect. Such a localized perturba- 
tion is named a "shear line." It can be easily unstable under an external 
stress, giving birth to an even number (at least a pair) of opposite disloca- 
tions. In the same way a dissociation line may produce an odd number (at 
least three) of dislocations. In both cases the total topological "charge" is 
conserved. One has a dynamical process of creation and multiplication of 
defects, by dissociation of initial defects and relaxation of extended dis- 
sociated lines. The stress may also be internal, i.e., generated by the local 
field of heterogeneous modulations that characterize the complex state 
developed by a rapid application of the stress. 

3.5. Regular Patterns of  Defec t s  

In some cases the modulational instabilities of the basic structure are 
periodic in space, giving rise to supermodulated rolls. Rolls equally spaced 
by a fixed number of periods n2 (typically n = 2 ,  3, 4) have a larger 
amplitude and a smaller diameter. We call them "walls" (of discommen- 
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Fig. 12. (a) A dissociated core of a dislocation ( f= 70 Hz, V= !1.8 V, d= 50/1m); (b)a 
"shear line" is a strong localized phase modulation, but not a defect. It can relax to give rise 
to a pair of dislocations ( f=  70 Hz, V= 11.8 V, d= 50 gin). 

suration). This case is commonly observed quite near the lowest frequency 
of the traveling-wave range. Then, as the voltage is increased smoothly, 
periodic distortions of shear occur in the space between the large-amplitude 
"walls" along y as in the nucleation process described in Section2.1. 
However, the splitting does not occur here and the nucleation is aborted. 
One obtains a perfectly ordered state of periodic modulations of phase and 
amplitude (walls) along x, and periodic shear lines along y (Fig. 13). As the 
voltage is further increased, the walls disappear, the shear lines connect 
together in the x direction, and one recovers suddenly the Bimodal state 
since the shear lines have precisely the topology of the dissociated lines (or 
the basic singular lines of Bimodal). 

3.6.  D i s c u s s i o n  

The core of stable defects has the symmetry elements of the unstable 
state. This state could therefore be "germinated" from the defects under a 
larger stress. However, one major  question arises here. Such a transforma- 
tion would imply in a classical picture of phase changes that the bifurca- 
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Fig. 13. Strong and localized modulations of rolls along the horizontal (x) and trapped dis- 
location pairs stacking along y give a regular array of localized bifurcated states ( f  = 80 Hz, 
V= 12.0 V, d=25  #m). 

tions be subcritical to allow the coexistence of domains with a different 
order parameter. But actual findings c5'25) indicate that the bifurcations are 
here supercritical. 

4. LOCALIZED BIFURCATIONS IN NONLINEAR WAVES 

4.1 .Point Defects in Nonlinear Waves 
(Space-Time Dislocations) 

In the {x, t} space the point defect is here, too, a dislocation, (22) i.e., 
the sudden loss (or gain) at a given time of one space period (Fig. 14). It 
was shown that space-time dislocations occur after a localized perturbation 
of the phase. (~2) Since here the phase is q5 = ( k x -  cot), a local modulation 
~(x)  expresses a localized change in the velocity (v = co~k), i.e., a shock. In 
a shock, the local wavevector undergoes a sudden variation which pulls it 
beyond some stability limit (for instance, of the Eckhaus-Benjamin-Feir 
type). The restabilization occurs by expelling (in a compressive shock) or 
creating (in a dilative one) one spatial period. Then dislocations are created 
the charge of which is related to the type of shock. 
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Fig. 14. (a) A space-time dislocation in a nonlinear 1D wave ( f= 105 Hz, V=34.4V, 
d=10pm) and (b) its numerical simulation with initial conditions c~=l, fl=0.4, 7= 1.4, 
~=Cg=0, [A[ =const, B=0, ~0a= z~ th(x/4.4). 

4.2. Pair of  Dislocations 

It is experimentally found that the creation of pair of dislocations is 
quite rare and the conditions for it are not yet clear. At the core of a dis- 
location theampl i tude  modulus IAI vanishes and because of the coupling 
between left- and right-going waves (the two states are equally stable) any 
decrease in A, for instance, favors a correlative increase in B. By the 
numerical simulation of the coupled CLG equations, one verifies that dis- 
locations are also solutions to the equations. (23) This is done by imposing 
as an initial condition a localized phase jump of 2rr (Fig. 14). 

4.3. Line Defects in Nonl inear Waves,  Sinks, and Sources 

They correspond to limits, the domain walls, separating two domains 
of counterpropagative waves, i.e., points (in 1D) where [A[ -- IBt (Fig. 15). 
Those points are represented in the {x, t} space as line defects. (24) A 
domain wall is a sink when the waves A and B meet at it and a source when 
they are emitted from it. 

Sinks and sources are stable topological defects characterized by 
the coupling between the two states. At their core, [A[ = [BI, which 
corresponds to the condition for a standing wave at one point. (22'23) Because 
of the competition between space gradients and nonlinearity, the 
amplitudes profile around this point is kinktike and over some finite dis- 
tance there is a mixing of the two states. A mixing represents in fact a 
modulated wave (MW), the modulation amplitude decreasing with increas- 
ing distance from the wall. Figure 6b shows the modulated wave in the 
vicinity of a source. This structure is quite similar to that around the core 
of a dislocation. It is also identical to the structure of a domain walt in the 
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Fig. 15. The creation of a pair of domain walls, a source (left) and a sink (right). (a) Experi- 
ment ( f=  87 Hz, V= 28.1 V, d= 15/tm); (b) simulation with same initial conditions as for the 
dislocation, except that now IBI =0.2 sech4(4.4x). 

Oblique Rolls structure because of the same symmetries. (5) The mechanism 
of creation of a pair sink-source is basically the same as for the creation of 
a pair of space-time dislocations, i.e., a compressive and a dilative shock. 
Numerically, the creation of a pair sink-source is achieved by imposing a 
local phase jump of 2re and simultaneously allowing a state B to grow from 
noise (23~ (Fig. 15). 

4.4. Instabi l i ty  of  Sinks and Sources 

The point defects are topologically unstable in the 1D physical space 
and therefore only the line defects which are topologically stable can be 
made unstable under stress. Here, too, it is the core structure that deter- 
mines the unstable state of the defect. The core has the symmetry elements 
of a standing wave and is surrounded by a decreasing-amplitude 
modulated wave. It is then expected to be unstable against a localized 
standing wave at least transiently. Two typical cases are considered: 

(a) Multiplication of sinks and sources. (23~ Consider the case where 
the system is in the uniform wave state but close to the bifurcation to the 
standing wave. In the equations this comes to giving 7 a value slightly 
higher than 1. In addition, one may allow phase fluctuations to occur, for 
instance, by satisfying the Benjamin-Feir  criterion 1 + e/? < 0. The result is 
the following: because the core represents the most unstable phase, any 
fluctuation will try to destabilize it. Then a standing-wave domain starts 
developing from the core. The finite lifetime of the phase instability makes 
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this state a transient and restabilization occurs either back to the initial 
defect or to an odd number  of defects (to conserve the ' topological  charge). 
In Fig. 16 a sink gives rise to a source plus two sinks. By numerical simula- 
tion of the coupled C L G  equations one is able, following this scheme, to 
mimic the experimental multiplication of defects (Fig. 16a). 

(b) Core-widening under stress, f25) The action of an appropriate  
external stress on a state of progressive waves makes them unstable to 
standing waves beyond some threshold. For  instance, applying a modula-  
tion of the voltage at frequency 2co, where co is the frequency of the 
traveling wave, has for effect a coupling between the two A right- and B 
left-going waves. (26) In the equations this is done by adding a linear term 
in A or B to each C L G  equation. As the depth of modula t ion  increases, 
one passes cont inuously from the progressive wave P W  to a modula ted  
wave M W  (2v~ and a standing wave SW. (3~ 

Let us start from a state of domains  of progressive waves A and B 
separated by a d o m a i n  wal l  (say a source). Applying an increasing external 
forcing makes the SW state in the core more and more stable inside the 
PW state, which in turn becomes more unstable. In space, this leads to an 
extension of the source width inside the unstable P W  state. Experimentally, 
this variation is found to be nonlinear, diverging as the stable SW state is 
reached (Fig. 17). Such an instability is quite similar to the dissociation of 
dislocations described in Section 2.3. However,  it is not  expected from 
localized instabilities inside states that  bifurcate supercritically. In effect, by 
analogy with the phase transitions in solids such a domain-wall  widening 
is rather characteristic of subcritical bifurcations (28/ (germination growth, 

Fig. 16. A sink may become unstable and give rise to a source plus two sinks, (a) Experi- 
ment (f  = 95 Hz, V = 30 V, d = 10 ~m); (b) Simulation with ~ = 1,/~ = 0.4, ?, = 1.02, 3 = Cg = O, 
IAI = 0.5 sin(2~x/100) + 0.5, B = -0.5 cos(2~zx/100) + 0.5. 
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left and right waves). 

solidification fronts, transitions induced by grain boundaries). In fact, it 
has recently been shown that instability of space-time domain walls in the 
case of eventual subcritical bifurcations (29) would resemble the germination 
growth in solids. 

We notice that both in the case of defects in stationary states or of 
defects in nonlinear waves the spatial extension of the local bifurcation has 
similar characteristics under stress (see Sections 3.3, 3.4). 

5. CONCLUSION 

It is found experimentally that either in stationary or time-dependent 
spatially uniform (homogeneous) states, local perturbations of the order 
parameter may induce singularities such as defects. The latter case is a 
novel phenomenon in nonlinear waves. The core of defects represents a 
local bifurcated state with a lower symmetry. Therefore the destabilization 
of the uniform state may start locally by the destabilization of the core of 
the defect. The instability of a defect may rise to several mechanisms that 
contribute either to the progressive disorganization of the basic state 
(defect multiplication) or to a bifurcation to a homogeneous state 
("germination"). However, by analogy with phase transitions in solids, 
such a behavior, which would be expected when bifurcations are subcritical, 
raises a problem since the bifurcations are experimentally found to be 
supercritical. Nevertheless, most of the experimental effects concerning the 
creation, the structure, and the stability of defects can be reproduced 
numerically using these CLG equations. In the search for nonlinear 
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evolution equation starting from the basic microscopic equations of the 
nematoelectrohydrodynamics, one would certainly have to take into 
account the effects of localized bifurcations and instability of defects, 
without invoking subcritical bifurcations. Next, although not reported here, 
similar instabilities have been observed concerning the domain walls of the 
Oblique Roll structures, whereby the germination of the Bimodal can also 
be realized. 

This study was motivated by the fact that usually the complex state is 
very commonly observed in between the first bifurcation, the Normal Rolls, 
and the last one, the Bimodal, before reaching chaos, instead of the 
secondary bifurcations, the Oblique Rolls and the Varicose. We understand 
now that this disordered state results from the application of a too large or 
a too fast stress increment; it involves local instabilities, creation of defects, 
and a time-dependent mode. It is similar to the so-called displacive 
transitions in solids, whereas the full sequence of bifurcations obtained only 
under the slow application of very small increments is the analog of a series 
of diffusive transitions. 
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